ALGEBRA STRUCTURE
(Group of Permutation)

Drs. Antonius Cahya Prihandoko, M.App.Sc

Mathematics Education Study Program
Faculty of Teacher Training and Education
University of Jember
Indonesia

Jember, 2011
1. Group of Permutation
 - Group of Permutations
 - Symmetric Group

2. Orbit and Cycle
 - Orbit
 - Cycle
 - Alternating Group
Outline

1. Group of Permutation
 - Group of Permutations
 - Symmetric Group

2. Orbit and Cycle
 - Orbit
 - Cycle
 - Alternating Group
Group of Permutations

Definition

Permutation on a set A is a one-to-one function from A onto itself.

Construction

Let A be a non-empty set and S_A be the set of all permutations in A. Then S_A is a group under permutation multiplication.
Definition

Permutation on a set A is a one-to-one function from A onto itself.

Construction

Let A be a non empty set and S_A be the set of all permutation in A. Then S_A is a group under permutation multiplication.
Symmetric Group

Definition
Let \(A = \{1, 2, 3, \ldots, n\} \), then group of all permutations on \(A \) is called **symmetric group** \(n \), and be denoted as \(S_n \).

Example
Let \(A = \{1, 2, 3\} \) then \(S_3 \) has \(3! = 6 \) elements. All permutations on \(A \) can be described below.

\[
\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},
\]

\[
\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},
\]

\[
\rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},
\]
Symmetric Group

Definition
Let \(A = \{1, 2, 3, \ldots, n\} \), then group of all permutations on \(A \) is called **symmetric group** \(n \), and be denoted as \(S_n \).

Example
Let \(A = \{1, 2, 3\} \) then \(S_3 \) has \(3! = 6 \) elements. All permutations on \(A \) can be described below.

\[
\rho_0 = \begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix}, \quad \mu_1 = \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix},
\]

\[
\rho_1 = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix}, \quad \mu_2 = \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix},
\]

\[
\rho_2 = \begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix}, \quad \mu_3 = \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix},
\]
Let σ be a permutation of a set A. The equivalence classes determined by the equivalence relation

$$a \sim b \iff b = \sigma^n(a)$$

are the **orbits** of σ.

The orbits of permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 6 & 3 & 7 & 4 & 5 & 2 \end{pmatrix}$$

of S_8 can be found by applying σ repeatedly, obtaining symbolically

$$1 \rightarrow 8 \rightarrow 2 \rightarrow 1$$
Let σ be a permutation of a set A. The equivalence classes determined by the equivalence relation

$$a \sim b \iff b = \sigma^n(a)$$

are the **orbits** of σ.

The orbits of permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 6 & 3 & 7 & 4 & 5 & 2 \end{pmatrix}$$

of S_8 can be found by applying σ repeatedly, obtaining symbolically

$$1 \rightarrow 8 \rightarrow 2 \rightarrow 1$$
A permutation $\sigma \in S_n$ is a **cycle** if σ has at most one orbit containing more than one element. The **length** of a cycle is the number of elements in its largest orbit.

Note

Unlike in the orbit notation, the order of elements in the cycle notation determines moving flow. For example, $(1, 8, 2) = (8, 2, 1) = (2, 1, 8)$ but $(1, 8, 2) \neq (1, 2, 8)$.

Theorem

Each permutation σ in a finite set is a product of disjoint cycles.
Definition
A permutation $\sigma \in S_n$ is a cycle if σ has at most one orbit containing more than one element. The length of a cycle is the number of elements in its largest orbit.

Note
Unlike in the orbit notation, the order of elements in the cycle notation determines moving flow. For example, $(1, 8, 2) = (8, 2, 1) = (2, 1, 8)$ but $(1, 8, 2) \neq (1, 2, 8).$

Theorem
Each permutation σ in a finite set is a product of disjoint cycles.
Definition

A permutation $\sigma \in S_n$ is a **cycle** if σ has at most one orbit containing more than one element. The **length** of a cycle is the number of elements in its largest orbit.

Note

Unlike in the orbit notation, the order of elements in the cycle notation determines moving flow. For example, $(1, 8, 2) = (8, 2, 1) = (2, 1, 8)$ but $(1, 8, 2) \neq (1, 2, 8)$.

Theorem

Each permutation σ in a finite set is a product of disjoint cycles.
Transposition

Definition
A cycle of length 2 is called transposition.

Each cycle can be described as a product of transpositions,

\[(a_1, a_2, a_3, \cdots, a_{n-1}, a_n) = (a_1, a_n)(a_1, a_{n-1}) \cdots (a_1, a_3)(a_1, a_2)\]

Therefore, a permutation is also a product of transpositions.

Theorem
Let \(\sigma \in S_n\) and \(\tau\) be a transposition on \(S_n\). The number of orbits of \(\sigma\) and the number of orbits of \(\tau\sigma\) differ by 1.
Transposition

Definition
A cycle of length 2 is called transposition.

Each cycle can be described as a product of transpositions,

\[(a_1, a_2, a_3, \cdots, a_{n-1}, a_n) = (a_1, a_n)(a_1, a_{n-1}) \cdots (a_1, a_3)(a_1, a_2).\]

Therefore, a permutation is also a product of transpositions.

Theorem
Let \(\sigma \in S_n\) and \(\tau\) be a transposition on \(S_n\). The number of orbits of \(\sigma\) and the number of orbits of \(\tau\sigma\) differ by 1.
Transposition

Definition
A cycle of length 2 is called **transposition**.

Each cycle can be described as a product of transpositions,

\[(a_1, a_2, a_3, \cdots, a_{n-1}, a_n) = (a_1, a_n)(a_1, a_{n-1}) \cdots (a_1, a_3)(a_1, a_2).\]

Therefore, a permutation is also a product of transpositions.

Theorem
Let \(\sigma \in S_n\) and \(\tau\) be a transposition on \(S_n\). The number of orbits of \(\sigma\) and the number of orbits of \(\tau\sigma\) differ by 1.
Even and Odd Permutation

A permutation of a finite set is **even** or **odd** according to whether it can be expressed as a product of an even number of transposition or the product of an odd number of transposition, respectively.

Alternating Group

The subgroup of S_n consisting even permutations is called **alternating group**, A_n on n letters.
Even and Odd Permutation

A permutation of a finite set is **even** or **odd** according to whether it can be expressed as a product of an even number of transposition or the product of an odd number of transposition, respectively.

Alternating Group

The subgroup of S_n consisting even permutations is called **alternating group**, A_n on n letters.